
Automated Theorem Proving

Peter Baumgartner

Peter.Baumgartner@nicta.com.au

http://users.rsise.anu.edu.au/˜baumgart/

Slides partially based on material by Alexander Fuchs, Harald Ganzinger, John Slaney, Viorica Sofronie-Stockermans and Uwe Waldmann

Automated Theorem Proving – Peter Baumgartner – p.1

Peter.Baumgartner@nicta.com.au
http://users.rsise.anu.edu.au/~baumgart/


Purpose of This Lecture

Overview of Automated Theorem Proving (ATP)

Emphasis on automated proof methods for first-order logic

More “breadth” than “depth”

Standard techniques covered

Normal forms of formulas

Herbrand interpretations

Resolution calculus, unification

Instance-based methods

Model computation

Theory reasoning: Satisfiability Modulo Theories
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Part 1: What is Automated Theorem Proving?
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First-Order Theorem Proving in Relation to ...

. . . Calculation: Compute function value at given point:

Problem: 22 = ? 32 = ? 42 = ?

“Easy” (often polynomial)

. . . Constraint Solving: Given:

Problem: x2 = a where x ∈ [1 . . . b]

(x variable, a, b parameters)

Instance: a = 16, b = 10

Find values for variables such that problem instance is satisfied

“Difficult” (often exponential, but restriction to finite domains)

First-Order Theorem Proving: Given:

Problem: ∃x (x2 = a ∧ x ∈ [1 . . . b])

Is it satisfiable? unsatisfiable? valid?

“Very difficult” (often undecidable)
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Logical Analysis Example: Three Coloring Problem

Problem: Given a map. Can it be colored using only three colors, where neigh-

bouring countries are colored differently?

Automated Theorem Proving – Peter Baumgartner – p.5



Three Coloring Problem - Graph Theory Abstraction

Problem Instance Problem Specification

The Rôle of Theorem Proving?
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Three Coloring Problem - Formalization

Every node has at least one color

∀N (red(N) ∨ green(N) ∨ blue(N))

Every node has at most one color

∀N ((red(N)→ ¬green(N)) ∧

(red(N)→ ¬blue(N)) ∧

(blue(N)→ ¬green(N)))

Adjacent nodes have different color

∀M, N (edge(M, N)→ (¬(red(M) ∧ red(N)) ∧

¬(green(M) ∧ green(N)) ∧

¬(blue(M) ∧ blue(N))))
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Three Coloring Problem - Solving Problem Instances ...

... with a constraint solver:

Let constraint solver find value(s) for variable(s) such that problem

instance is satisfied

Here: Variables: Colors of nodes in graph

Values: Red, green or blue

Problem instance: Specific graph to be colored

... with a theorem prover

Let the theorem prover prove that the three coloring formula (see previous

slide) + specific graph (as a formula) is satisfiable

To solve problem instances a constraint solver is usually much more

efficient than a theorem prover (e.g. use a SAT solver)

Theorem provers are not even guaranteed to terminate, in general

Other tasks where theorem proving is more appropriate?
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Three Coloring Problem: The Rôle of Theorem Proving

Functional dependency

Blue coloring depends functionally on the red and green coloring

Blue coloring does not functionally depend on the red coloring

Theorem proving: Prove a formula is valid. Here:

Is “the blue coloring is functionally dependent on the red/red and

green coloring” (as a formula) valid, i.e. holds for all possible

graphs?

I.e. analysis wrt. all instances ⇒ theorem proving is adequate

Theorem Prover Demo
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Part 2: Methods in Automated Theorem Proving
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How to Build a (First-Order) Theorem Prover

1. Fix an input language for formulas

2. Fix a semantics to define what the formulas mean

Will be always “classical” here

3. Determine the desired services from the theorem prover

(The questions we would like the prover be able to answer)

4. Design a calculus for the logic and the services

Calculus: high-level description of the “logical analysis” algorithm

This includes redundancy criteria for formulas and inferences

5. Prove the calculus is correct (sound and complete) wrt. the logic and the

services, if possible

6. Design a proof procedure for the calculus

7. Implement the proof procedure (research topic of its own)

Go through the red issues in the rest of this talk
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Calculus: high-level description of the “logical analysis” algorithm

This includes redundancy criteria for formulas and inferences

5. Prove the calculus is correct (sound and complete) wrt. the logic and the

services, if possible

6. Design a proof procedure for the calculus

7. Implement the proof procedure (research topic of its own)

Automated Theorem Proving – Peter Baumgartner – p.12



Languages and Services — Propositional SAT

Question
Theorem Prover

No

Formula(s)
Yes

Formula: Propositional logic formula φ

Question: Is φ satisfiable?

(Minimal model? Maximal consistent subsets? )

Theorem Prover: Based on BDD, DPLL, or stochastic local search

Issue: the formula φ can be BIG
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DPLL as a Semantic Tree Method

(1) A ∨ B (2) C ∨ ¬A (3) D ∨ ¬C ∨ ¬A (4) ¬D ∨ ¬B

{} 6|= A ∨ B

{} |= C ∨ ¬A

{} |= D ∨ ¬C ∨ ¬A

{} |= ¬D ∨ ¬B

〈empty tree〉

A Branch stands for an interpretation

Purpose of splitting: satisfy a clause that is currently falsified

Close branch if some clause is plainly falsified by it (⋆)
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DPLL as a Semantic Tree Method

(1) A ∨ B (2) C ∨ ¬A (3) D ∨ ¬C ∨ ¬A (4) ¬D ∨ ¬B

{A} |= A ∨ B

{A} 6|= C ∨ ¬A

{A} |= D ∨ ¬C ∨ ¬A

{A} |= ¬D ∨ ¬B

A ¬A

A Branch stands for an interpretation

Purpose of splitting: satisfy a clause that is currently falsified

Close branch if some clause is plainly falsified by it (⋆)
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DPLL as a Semantic Tree Method

(1) A ∨ B (2) C ∨ ¬A (3) D ∨ ¬C ∨ ¬A (4) ¬D ∨ ¬B

{A, C} |= A ∨ B

{A, C} |= C ∨ ¬A

{A, C} 6|= D ∨ ¬C ∨ ¬A

{A, C} |= ¬D ∨ ¬B⋆

A

C ¬C

¬A

A Branch stands for an interpretation

Purpose of splitting: satisfy a clause that is currently falsified

Close branch if some clause is plainly falsified by it (⋆)
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DPLL as a Semantic Tree Method

(1) A ∨ B (2) C ∨ ¬A (3) D ∨ ¬C ∨ ¬A (4) ¬D ∨ ¬B

{A,C , D} |= A ∨ B

{A,C , D} |= C ∨ ¬A

{A,C , D} |= D ∨ ¬C ∨ ¬A

{A,C , D} |= ¬D ∨ ¬B

Model {A, C , D} found.

A

C ¬C

D ¬D

¬A

⋆

⋆

A Branch stands for an interpretation

Purpose of splitting: satisfy a clause that is currently falsified

Close branch if some clause is plainly falsified by it (⋆)
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DPLL as a Semantic Tree Method

(1) A ∨ B (2) C ∨ ¬A (3) D ∨ ¬C ∨ ¬A (4) ¬D ∨ ¬B

{B} |= A ∨ B

{B} |= C ∨ ¬A

{B} |= D ∨ ¬C ∨ ¬A

{B} |= ¬D ∨ ¬B
B

A

C ¬C

D ¬D

¬A

¬B

⋆

⋆ ⋆

Model {B} found.

A Branch stands for an interpretation

Purpose of splitting: satisfy a clause that is currently falsified

Close branch if some clause is plainly falsified by it (⋆)

DPLL is the basis of most efficient SAT solvers today
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Languages and Services — Description Logics

Question
Theorem Prover

No

Formula(s)
Yes

Formula: Description Logic TBox + ABox (restricted FOL)

TBox: Terminology

ABox: Assertions

Professor ⊓ ∃ supervises . Student ⊑ BusyPerson

p : Professor (p, s) : supervises

Question: Is TBox + ABox satisfiable?

(Does C subsume D?, Concept hierarchy?)

Theorem Prover: Tableaux algorithms (predominantly)

Issue: Push expressivity of DLs while preserving decidability

See overview lecture by Maurice Pagnucco on “Knowledge Representation and

Reasoning”
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Languages and Services — Satisfiability Modulo Theories (SMT)

Question
Theorem Prover

No

Formula(s)
Yes

Formula: Usually variable-free first-order logic formula φ

Equality
.
=, combination of theories, free symbols

Question: Is φ valid? (satisfiable? entailed by another formula?)

|=N∪L ∀l (c = 5→ car(cons(3 + c , l))
.
= 8)

Theorem Prover: DPLL(T), translation into SAT, first-order provers

Issue: essentially undecidable for non-variable free fragment

P(0) ∧ (∀x P(x)→ P(x + 1)) |=N ∀x P(x)

Design a “good” prover anyways (ongoing research)
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Languages and Services — “Full” First-Order Logic

Question
Theorem Prover

No (sometimes)

Formula(s)
Yes

Formula: First-order logic formula φ (e.g. the three-coloring spec above)

Usually with equality
.
=

Question: Is φ formula valid? (satisfiable?, entailed by another formula?)

Theorem Prover: Superposition (Resolution), Instance-based methods

Issues

Efficient treatment of equality

Decision procedure for sub-languages or useful reductions?

Can do e.g. DL reasoning? Model checking? Logic programming?

Built-in inference rules for arrays, lists, arithmetics (still open research)
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How to Build a (First-Order) Theorem Prover

1. Fix an input language for formulas

2. Fix a semantics to define what the formulas mean

Will be always “classical” here

3. Determine the desired services from the theorem prover

(The questions we would like the prover be able to answer)

4. Design a calculus for the logic and the services

Calculus: high-level description of the “logical analysis” algorithm

This includes redundancy criteria for formulas and inferences

5. Prove the calculus is correct (sound and complete) wrt. the logic and the

services, if possible

6. Design a proof procedure for the calculus

7. Implement the proof procedure (research topic of its own)

Automated Theorem Proving – Peter Baumgartner – p.22



Semantics

“The function f is continuous”, expressed in (first-order) predicate logic:

∀ε(0 < ε→ ∀a∃δ(0 < δ ∧ ∀x(|x − a| < δ → |f (x)− f (a)| < ε)))

Underlying Language

Variables ε, a, δ, x

Function symbols 0, | |, − , f ( )

Terms are well-formed expressions over variables and function symbols

Predicate symbols < , =

Atoms are applications of predicate symbols to terms

Boolean connectives ∧, ∨, →, ¬

Quantifiers ∀, ∃

The function symbols and predicate symbols comprise a signature Σ
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Semantics

“The function f is continuous”, expressed in (first-order) predicate logic:

∀ε(0 < ε→ ∀a∃δ(0 < δ ∧ ∀x(|x − a| < δ → |f (x)− f (a)| < ε)))

“Meaning” of Language Elements – Σ-Algebras

Universe (aka Domain): Set U

Variables 7→ values in U (mapping is called “assignment”)

Function symbols 7→ (total) functions over U

Predicate symbols 7→ relations over U

Boolean connectives 7→ the usual boolean functions

Quantifiers 7→ “for all ... holds”, “there is a ..., such that”

Terms 7→ values in U

Formulas 7→ Boolean (Truth-) values
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Semantics - Σ-Algebra Example

Let ΣPA be the standard signature of Peano Arithmetic

The standard interpretation N for Peano Arithmetic then is:

UN = {0, 1, 2, . . .}

0N = 0

sN : n 7→ n + 1

+N : (n, m) 7→ n + m

∗N : (n, m) 7→ n ∗m

≤N = {(n, m) | n less than or equal to m}

<N = {(n, m) | n less than m}

Note that N is just one out of many possible ΣPA-interpretations
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Semantics - Σ-Algebra Example

Evaluation of terms and formulas

Under the interpretation N and the assignment β : x 7→ 1, y 7→ 3 we obtain

(N,β)(s(x) + s(0)) = 3

(N,β)(x + y
.
= s(y)) = True

(N,β)(∀z z ≤ y) = False

(N,β)(∀x∃y x < y) = True

N(∀x∃y x < y) = True (Short notation when β irrelevant)

Important Basic Notion: Model

If φ is a closed formula, then, instead of I (φ) = True one writes

I |= φ (“I is a model of φ”)

E.g. N |= ∀x∃y x < y

Standard reasoning services can now be expressed semantically
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Services Semantically

E.g. “entailment”:

Axioms over R ∧ continuous(f ) ∧ continuous(g) |= continuous(f + g) ?

Services

Model(I ,φ): I |= φ ? (Is I a model for φ?)

Validity(φ): |= φ ? (I |= φ for every interpretation?)

Satisfiability(φ): φ satisfiable? (I |= φ for some interpretation?)

Entailment(φ,ψ): φ |= ψ ? (does φ entail ψ?, i.e.

for every interpretation I : if I |= φ then I |= ψ?)

Solve(I ,φ): find an assignment β such that I ,β |= φ

Solve(φ): find an interpretation and assignment β such that I ,β |= φ

Additional complication: fix interpretation of some symbols (as in N above)

What if theorem prover’s native service is only “Is φ

unsatisfiable?” ?
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Semantics - Reduction to Unsatisfiability

Suppose we want to prove an entailment φ |= ψ

Equivalently, prove |= φ→ ψ, i.e. that φ→ ψ is valid

Equivalently, prove that ¬(φ→ ψ) is not satisfiable (unsatisfiable)

Equivalently, prove that φ ∧ ¬ψ is unsatisfiable

Basis for (predominant) refutational theorem proving

Dual problem, much harder: to disprove an entailment φ |= ψ find a model of

φ ∧ ¬ψ

One motivation for (finite) model generation procedures
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How to Build a (First-Order) Theorem Prover

1. Fix an input language for formulas

2. Fix a semantics to define what the formulas mean

Will be always “classical” here

3. Determine the desired services from the theorem prover

(The questions we would like the prover be able to answer)

4. Design a calculus for the logic and the services

Calculus: high-level description of the “logical analysis” algorithm

This includes redundancy criteria for formulas and inferences

5. Prove the calculus is correct (sound and complete) wrt. the logic and the

services, if possible

6. Design a proof procedure for the calculus

7. Implement the proof procedure (research topic of its own)
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Calculus - Normal Forms

Most first-order theorem provers take formulas in clause normal form

Why Normal Forms?

Reduction of logical concepts (operators, quantifiers)

Reduction of syntactical structure (nesting of subformulas)

Can be exploited for efficient data structures and control

Translation into Clause Normal Form

Theorem Prover

Clausal
normal
Clause

form
normal
Skolem

form
normalFormula
Prenex

form

Prop: the given formula and its clause normal form are equi-satisfiable
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Prenex Normal Form

Prenex formulas have the form

Q1x1 . . .Qnxn F ,

where F is quantifier-free and Qi ∈ {∀, ∃}

Computing prenex normal form by the rewrite relation ⇒P :

(F ↔ G ) ⇒P (F → G ) ∧ (G → F )

¬QxF ⇒P Qx¬F (¬Q)

(QxF ρ G ) ⇒P Qy(F [y/x ] ρ G ), y fresh, ρ ∈ {∧,∨}

(QxF → G ) ⇒P Qy(F [y/x ]→ G ), y fresh

(F ρ QxG ) ⇒P Qy(F ρ G [y/x ]), y fresh, ρ ∈ {∧,∨,→}

Here Q denotes the quantifier dual to Q, i.e., ∀ = ∃ and ∃ = ∀.

Automated Theorem Proving – Peter Baumgartner – p.31



In the Example

∀ε(0 < ε→ ∀a∃δ(0 < δ ∧ ∀x(|x − a| < δ → |f (x)− f (a)| < ε)))

⇒P

∀ε∀a(0 < ε→ ∃δ(0 < δ ∧ ∀x(|x − a| < δ → |f (x)− f (a)| < ε)))

⇒P

∀ε∀a∃δ(0 < ε→ 0 < δ ∧ ∀x(|x − a| < δ → |f (x)− f (a)| < ε))

⇒P

∀ε∀a∃δ(0 < ε→ ∀x(0 < δ ∧ |x − a| < δ → |f (x)− f (a)| < ε))

⇒P

∀ε∀a∃δ∀x(0 < ε→ (0 < δ ∧ (|x − a| < δ → |f (x)− f (a)| < ε)))
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Skolem Normal Form

Theorem Prover

Clausal
normal
Clause

form
normal
Skolem

form
normalFormula
Prenex

form

Intuition: replacement of ∃y by a concrete choice function computing y from

all the arguments y depends on.

Transformation ⇒S

∀x1, . . . , xn∃y F ⇒S ∀x1, . . . , xn F [f (x1, . . . , xn)/y ]

where f /n is a new function symbol (Skolem function).

In the Example

∀ε∀a∃δ∀x(0 < ε→ 0 < δ ∧ (|x − a| < δ → |f (x)− f (a)| < ε))

⇒S

∀ε∀a∀x(0 < ε→ 0 < d(ε, a) ∧ (|x − a| < d(ε, a)→ |f (x)− f (a)| < ε))
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Clausal Normal Form (Conjunctive Normal Form)

Rules to convert the matrix of the formula in Skolem normal form into a

conjunction of disjunctions:

(F ↔ G ) ⇒K (F → G ) ∧ (G → F )

(F → G ) ⇒K (¬F ∨ G )

¬(F ∨ G ) ⇒K (¬F ∧ ¬G )

¬(F ∧ G ) ⇒K (¬F ∨ ¬G )

¬¬F ⇒K F

(F ∧ G ) ∨ H ⇒K (F ∨ H) ∧ (G ∨ H)

(F ∧ ⊤) ⇒K F

(F ∧ ⊥) ⇒K ⊥

(F ∨ ⊤) ⇒K ⊤

(F ∨ ⊥) ⇒K F

They are to be applied modulo associativity and commutativity of ∧ and ∨
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In the Example

∀ε∀a∀x(0 < ε→ 0 < d(ε, a) ∧ (|x − a| < d(ε, a)→ |f (x)− f (a)| < ε))

⇒K

0 < d(ε, a) ∨ ¬ (0 < ε)

¬ (|x − a| < d(ε, a)) ∨ |f (x)− f (a)| < ε ∨ ¬ (0 < ε)

Note: The universal quantifiers for the variables ε, a and x , as well as the

conjunction symbol ∧ between the clauses are not written, for convenience
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The Complete Picture

F
∗
⇒P Q1y1 . . .Qnyn G (G quantifier-free)

∗
⇒S ∀x1, . . . , xm H (m ≤ n, H quantifier-free)

∗
⇒K ∀x1, . . . , xm

︸ ︷︷ ︸

leave out

k∧

i=1

ni∨

j=1

Lij

︸ ︷︷ ︸

clauses Ci
︸ ︷︷ ︸

F ′

N = {C1, . . . , Ck} is called the clausal (normal) form (CNF) of F

Note: the variables in the clauses are implicitly universally quantified

Instead of showing that F is unsatisfiable, the proof problem from now

is to show that N is unsatisfiable

Can do better than “searching through all interpretations”

Theorem: N is satisfiable iff it has a Herbrand model
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Herbrand Interpretations

A Herbrand interpretation (over a given signature Σ) is a Σ-algebra A such

that

The universe is the set TΣ of ground terms over Σ

(a ground term is a term without any variables ):

UA = TΣ

Every function symbol from Σ is “mapped to itself”:

fA : (s1, . . . , sn) 7→ f (s1, . . . , sn), where f is n-ary function symbol in Σ

Example

ΣPres = ({0/0, s/1, +/2}, {</2,≤/2})

UA = {0, s(0), s(s(0)), . . . , 0 + 0, s(0) + 0, . . . , s(0 + 0), s(s(0) + 0), . . .}

0 7→ 0, s(0) 7→ s(0), s(s(0)) 7→ s(s(0)), . . . , 0 + 0 7→ 0 + 0, . . .
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Herbrand Interpretations

Only interpretations pA of predicate symbols p ∈ Σ is undetermined in a

Herbrand interpretation

pA represented as the set of ground atoms

{p(s1, . . . , sn) | (s1, . . . , sn) ∈ pA where p ∈ Σ is n-ary predicate symbol}

Whole interpretation represented as
⋃

p∈Σ pA

Example

ΣPres = ({0/0, s/1, +/2}, {</2,≤/2}) (from above)

N as Herbrand interpretation over ΣPres

I = { 0 ≤ 0, 0 ≤ s(0), 0 ≤ s(s(0)), . . . ,

0 + 0 ≤ 0, 0 + 0 ≤ s(0), . . . ,

. . . , (s(0) + 0) + s(0) ≤ s(0) + (s(0) + s(0)), . . . }
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Herbrand’s Theorem

Proposition

A Skolem normal form ∀φ is unsatisfiable iff it has no Herbrand model

Theorem (Skolem-Herbrand-Theorem)

∀φ has no Herbrand model iff some finite set of ground instances

{φγ1, . . . ,φγn} is unsatisfiable

Applied to clause logic:

Theorem (Skolem-Herbrand-Theorem)

A set N of Σ-clauses is unsatisfiable iff some finite set of ground instances of

clauses from N is unsatisfiable

Leads immediately to theorem prover “Gilmore’s Method”
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Gilmore’s Method - Based on Herbrand’s Theorem

Grounding

Propositional
Method

¬P(z , a)

Clause Form

∀x ∃y P(y , x)
Preprocessing:

Outer loop:

Inner loop:

Given Formula

∧ ∀z ¬P(z , a)
P(f (x), x)
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Gilmore’s Method - Based on Herbrand’s Theorem

Grounding

Propositional
Method

¬P(z , a)

Clause Form

P(f (a), a)
¬P(a, a)

∀x ∃y P(y , x)
Preprocessing:

Outer loop:

∧ ∀z ¬P(z , a)

Inner loop:

Given Formula

P(f (x), x)
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Gilmore’s Method - Based on Herbrand’s Theorem

Outer LoopProof found

Grounding

Propositional
Method

Continue

¬P(z , a)∧ ∀z ¬P(z , a)

Given Formula

P(f (x), x)

STOP:

Clause Form

P(f (a), a)
¬P(a, a)

Sat?

∀x ∃y P(y , x)

No

Preprocessing:

Outer loop:

Inner loop:

Yes
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Gilmore’s Method - Based on Herbrand’s Theorem

Grounding

Propositional
Method

Preprocessing:

Outer loop:

Inner loop:

¬P(f (a), a)

∧ ∀z ¬P(z , a)

Given Formula

P(f (a), a)
¬P(a, a)

P(f (x), x)
¬P(z , a)

Clause Form

P(f (a), a)
¬P(a, a)

∀x ∃y P(y , x)
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Gilmore’s Method - Based on Herbrand’s Theorem

Outer LoopProof found

Grounding

Propositional
Method

ContinueSTOP:

¬P(f (a), a)

∧ ∀z ¬P(z , a)

Given Formula

P(f (a), a)
¬P(a, a)

P(f (x), x)
¬P(z , a)

Clause Form

P(f (a), a)
¬P(a, a)

∀x ∃y P(y , x)
Preprocessing:

Outer loop:

Inner loop:
Sat?

No Yes
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Calculi for First-Order Logic Theorem Proving

Gilmore’s method reduces proof search in first-order logic to

propositional logic unsatisfiability problems

Main problem is the unguided generation of (very many) ground clauses

All modern calculi address this problem in one way or another, e.g.

Guidance: Instance-Based Methods are similar to Gilmore’s method

but generate ground instances in a guided way

Avoidance: Resolution calculi need not generate the ground

instances at all

Resolution inferences operate directly on clauses, not on their ground

instances

Next: propositional Resolution, lifting, first-order Resolution
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The Propositional Resolution Calculus Res

Modern versions of the first-order version of the resolution calculus [Robinson

1965] are (still) the most important calculi for FOTP today.

Propositional resolution inference rule:

C ∨ A ¬A ∨ D

C ∨ D

Terminology: C ∨ D: resolvent; A: resolved atom

Propositional (positive) factorisation inference rule:

C ∨ A ∨ A

C ∨ A

These are schematic inference rules:

C and D – propositional clauses

A – propositional atom

“∨” is considered associative and commutative
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Sample Proof

1. ¬A ∨ ¬A ∨ B (given)

2. A ∨ B (given)

3. ¬C ∨ ¬B (given)

4. C (given)

5. ¬A ∨ B ∨ B (Res. 2. into 1.)

6. ¬A ∨ B (Fact. 5.)

7. B ∨ B (Res. 2. into 6.)

8. B (Fact. 7.)

9. ¬C (Res. 8. into 3.)

10. ⊥ (Res. 4. into 9.)
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Soundness of Propositional Resolution

Proposition

Propositional resolution is sound

Proof:

Let I ∈ Σ-Alg. To be shown:

1. for resolution: I |= C ∨ A, I |= D ∨ ¬A ⇒ I |= C ∨ D

2. for factorization: I |= C ∨ A ∨ A ⇒ I |= C ∨ A

Ad (i): Assume premises are valid in I . Two cases need to be considered:

(a) A is valid in I , or (b) ¬A is valid in I .

a) I |= A⇒ I |= D ⇒ I |= C ∨ D

b) I |= ¬A⇒ I |= C ⇒ I |= C ∨ D

Ad (ii): even simpler
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Completeness of Propositional Resolution

Theorem:

Propositional Resolution is refutationally complete

That is, if a propositional clause set is unsatisfiable, then Resolution will

derive the empty clause ⊥ eventually

More precisely: If a clause set is unsatisfiable and closed under the

application of the Resolution and Factorization inference rules, then it

contains the empty clause ⊥

Perhaps easiest proof: semantic tree proof technique (see blackboard)

This result can be considerably strengthened, some strengthenings come

for free from the proof

Propositional resolution is not suitable for first-order clause sets
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Lifting Propositional Resolution to First-Order Resolution

Propositional resolution

Clauses Ground instances

P(f (x), y) {P(f (a), a), . . . ,P(f (f (a)), f (f (a))), . . .}

¬P(z , z) {¬P(a), . . . ,¬P(f (f (a)), f (f (a))), . . .}

Only common instances of P(f (x), y) and P(z , z) give rise to inference:

P(f (f (a)), f (f (a))) ¬P(f (f (a)), f (f (a)))

⊥

Unification

All common instances of P(f (x), y) and P(z , z) are instances of P(f (x), f (x))

P(f (x), f (x)) is computed deterministically by unification

First-order resolution
P(f (x), y) ¬P(z , z)

⊥

Justified by existence of P(f (x), f (x))

Can represent infinitely many propositional resolution inferences
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Substitutions and Unifiers

A substitution σ is a mapping from variables to terms which is the

identity almost everywhere

Example: σ = [y 7→ f (x), z 7→ f (x)]

A substitution can be applied to a term or atom t, written as tσ

Example, where σ is from above: P(f (x), y)σ = P(f (x), f (x))

A substitution γ is a unifier of s and t iff sγ = tγ

Example: γ = [x 7→ a, y 7→ f (a), z 7→ f (a)] is a unifier of P(f (x), y) and

P(z , z)

A unifier σ of s is most general iff for every unifier γ of s and t there is

a substitution δ such that γ = σ ◦ δ; notation: σ = mgu(s, t)

Example: σ = [y 7→ f (x), z 7→ f (x)] = mgu(P(f (x), y), P(z , z))

There are (linear) algorithms to compute mgu’s or return “fail”
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Resolution for First-Order Clauses

C ∨ A D ∨ ¬B

(C ∨ D)σ
if σ = mgu(A, B) [resolution]

C ∨ A ∨ B

(C ∨ A)σ
if σ = mgu(A, B) [factorization]

In both cases, A and B have to be renamed apart (made variable disjoint).

Example

Q(z) ∨ P(z , z) ¬P(x , y)

Q(x)
where σ = [z 7→ x , y 7→ x ] [resolution]

Q(z) ∨ P(z , a) ∨ P(a, y)

Q(a) ∨ P(a, a)
where σ = [z 7→ a, y 7→ a] [factorization]
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Completeness of First-Order Resolution

Theorem: Resolution is refutationally complete

That is, if a clause set is unsatisfiable, then Resolution will derive the

empty clause ⊥ eventually

More precisely: If a clause set is unsatisfiable and closed under the

application of the Resolution and Factorization inference rules, then it

contains the empty clause ⊥

Perhaps easiest proof: Herbrand Theorem + completeness of

propositional resolution + Lifting Theorem (see blackboard)

Lifting Theorem: the conclusion of any propositional inference on

ground instances of first-order clauses can be obtained by instantiating

the conclusion of a first-order inference on the first-order clauses

Closure can be achieved by the “Given Clause Loop”
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The “Given Clause Loop”

As used in the Otter theorem prover:

Lists of clauses maintained by the algorithm: usable and sos.

Initialize sos with the input clauses, usable empty.

Algorithm (straight from the Otter manual):

While (sos is not empty and no refutation has been found)

1. Let given_clause be the ‘lightest’ clause in sos;

2. Move given_clause from sos to usable;

3. Infer and process new clauses using the inference rules in

effect; each new clause must have the given_clause as

one of its parents and members of usable as its other

parents; new clauses that pass the retention tests

are appended to sos;

End of while loop.

Fairness: define clause weight e.g. as “depth + length” of clause.
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The “Given Clause Loop” - Graphically
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Calculi for First-Order Logic Theorem Proving

Recall:

Gilmore’s method reduces proof search in first-order logic to

propositional logic unsatisfiability problems

Main problem is the unguided generation of (very many) ground clauses

All modern calculi address this problem in one way or another, e.g.

Guidance: Instance-Based Methods are similar to Gilmore’s method

but generate ground instances in a guided way

Avoidance: Resolution calculi need not generate the ground

instances at all

Resolution inferences operate directly on clauses, not on their ground

instances

Next: Instance-Based Method “Inst-Gen”
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Inst-Gen [Ganzinger&Korovin 2003]

Idea: “semantic” guidance: add only instances that are falsified by a

“candidate model”

Eventually, all repairs will be made or there is no more candidate model

Important notation: ⊥ denotes both a unique constant and a substitution

that maps every variable to ⊥

Example (S is “current clause set”):

S : P(x , y) ∨ P(y , x)

¬P(x , x)

S⊥ : P(⊥,⊥) ∨ P(⊥,⊥)

¬P(⊥,⊥)

Analyze S⊥:

Case 1: SAT detects unsatisfiability of S⊥

Then Conclude S is unsatisfiable

But what if S⊥ is satisfied by some model, denoted by I⊥?
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Inst-Gen

Main idea: associate to model I⊥ of S⊥ a candidate model IS of S .

Calculus goal: add instances to S so that IS becomes a model of S

Example:

S : P(x) ∨ Q(x)

¬P(a)

S⊥ : P(⊥) ∨ Q(⊥)

¬P(a)

Analyze S⊥:

Case 2: SAT detects model I⊥ = {P(⊥),¬P(a)} of S⊥

Case 2.1: candidate model IS = {¬P(a)} derived from

literals selected in S by I⊥ is not a model of S

Add “problematic” instance P(a) ∨ Q(a) to S to refine IS
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Inst-Gen

Clause set after adding P(a) ∨ Q(a)

S : P(x) ∨ Q(x)

P(a) ∨ Q(a)

¬P(a)

S⊥ : P(⊥) ∨ Q(⊥)

P(a) ∨ Q(a)

¬P(a)

Analyze S⊥:

Case 2: SAT detects model I⊥ = {P(⊥), Q(a),¬P(a)} of S⊥

Case 2.2: candidate model IS = {Q(a),¬P(a)} derived from

literals selected in S by I⊥ is a model of S

Then conclude S is satisfiable

How to derive candidate model IS?
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Inst-Gen - Model Construction

It provides (partial) interpretation for Sground for given clause set S

S : P(x) ∨ Q(x)

P(a) ∨ Q(a)

¬P(a)

Σ = {a, b}, Sground : P(b) ∨ Q(b)

P(a) ∨ Q(a)

¬P(a)

For each Cground ∈ Sground find most specific C ∈ S that can be

instantiated to Cground

Select literal in Cground corresponding to selected literal in that C

Add selected literal of that Cground to IS if not in conflict with IS

Thus, IS = {P(b), Q(a),¬P(a)}
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Model Generation

Scenario: no “theorem” to prove, or disprove a “theorem”

A model provides further information then

Why compute models?

Planning: Can be formalised as propositional satisfiability problem.

[Kautz& Selman, AAAI96; Dimopolous et al, ECP97]

Diagnosis: Minimal models of abnormal literals (circumscription). [Reiter, AI87]

Databases: View materialisation, View Updates, Integrity Constraints.

Nonmonotonic reasoning: Various semantics (GCWA, Well-founded, Perfect,

Stable,. . . ), all based on minimal models. [Inoue et al, CADE 92]

Software Verification: Counterexamples to conjectured theorems.

Theorem proving: Counterexamples to conjectured theorems.

Finite models of quasigroups, (MGTP/G). [Fujita et al, IJCAI 93]
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Model Generation

Why compute models (cont’d)?

Natural Language Processing:

Maintain models I1, . . . , In as different readings of discourses:

Ii |= BG -Knowledge ∪ Discourse so far

Consistency checks (“Mia’s husband loves Sally. She is not married.”)

BG -Knowledge ∪ Discourse so far 6|= ¬New utterance

iff BG -Knowledge ∪ Discourse so far ∪ New utterance is satisfiable

Informativity checks (“Mia’s husband loves Sally. She is married.”)

BG -Knowledge ∪ Discourse so far 6|= New utterance

iff BG -Knowledge ∪ Discourse so far ∪ ¬New utterance is satisfiable
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Example - Group Theory

The following axioms specify a group

∀x , y , z : (x ∗ y) ∗ z = x ∗ (y ∗ z) (associativity)

∀x : e ∗ x = x (left− identity)

∀x : i(x) ∗ x = e (left− inverse)

Does

∀x , y : x ∗ y = y ∗ x (commutat.)

follow?

No, it does not
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Example - Group Theory

Counterexample: a group with finite domain of size 6, where the elements 2

and 3 are not commutative: Domain: {1, 2, 3, 4, 5, 6}

e : 1

i :
1 2 3 4 5 6

1 2 3 5 4 6

∗ :

1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 1 4 3 6 5

3 3 5 1 6 2 4

4 4 6 2 5 1 3

5 5 3 6 1 4 2

6 6 4 5 2 3 1
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Finite Model Finders - Idea

Assume a fixed domain size n.

Use a tool to decide if there exists a model with domain size n for a given

problem.

Do this starting with n = 1 with increasing n until a model is found.

Note: domain of size n will consist of {1, . . . , n}.
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1. Approach: SEM-style

Tools: SEM, Finder, Mace4

Specialized constraint solvers.

For a given domain generate all ground instances of the clause.

Example: For domain size 2 and clause p(a, g(x)) the instances are

p(a, g(1)) and p(a, g(2)).
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1. Approach: SEM-style

Set up multiplication tables for all symbols with the whole domain as cell

values.

Example: For domain size 2 and function symbol g with arity 1 the cells

are g(1) = {1, 2} and g(2) = {1, 2}.

Try to restrict each cell to exactly 1 value.

The clauses are the constraints guiding the search and propagation.

Example: if the cell of a contains {1}, the clause a = b forces the cell of b

to be {1} as well.
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2. Approach: Mace-style

Tools: Mace2, Paradox

For given domain size n transform first-order clause set into equisatisfiable

propositional clause set.

Original problem has a model of domain size n iff the transformed

problem is satisfiable.

Run SAT solver on transformed problem and translate model back.
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Paradox - Example

Domain: {1, 2}

Clauses: {p(a) ∨ f (x) = a}

Flattened: p(y) ∨ f (x) = y ∨ a 6= y

Instances: p(1) ∨ f (1) = 1 ∨ a 6= 1

p(2) ∨ f (1) = 1 ∨ a 6= 2

p(1) ∨ f (2) = 1 ∨ a 6= 1

p(2) ∨ f (2) = 1 ∨ a 6= 2

Totality: a = 1 ∨ a = 2

f (1) = 1 ∨ f (1) = 2

f (2) = 1 ∨ f (2) = 2

Functionality: a 6= 1 ∨ a 6= 2

f (1) 6= 1 ∨ f (1) 6= 2

f (2) 6= 1 ∨ f (2) 6= 2

A model is obtained by setting the blue literals true
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Theory Reasoning

Let T be a first-order theory of signature Σ

Let L be a class of Σ-formulas

The T -validity Problem

Given φ in L, is it the case that T |= φ ? More accurately:

Given φ in L, is it the case that T |= ∀ φ ?

Examples

“0/0, s/1, +/2, = /2, ≤ /2′′ |= ∃y .y > x

The theory of equality E |= φ (φ arbitrary formula)

“An equational theory” |= ∃ s1 = t1 ∧ · · · ∧ sn = tn

(E-Unification problem)

“Some group theory” |= s = t (Word problem)

The T -validity problem is decidably only for restricted L and T

Automated Theorem Proving – Peter Baumgartner – p.70



Approaches to Theory Reasoning

Theory-Reasoning in Automated First-Order Theorem Proving

Semi-decide the T -validity problem, T |= φ ?

φ arbitrary first-order formula, T universal theory

Generality is strength and weakness at the same time

Really successful only for specific instance:

T = equality, inference rules like paramodulation

Satisfiability Modulo Theories (SMT)

Decide the T -validity problem, T |= φ ?

Usual restriction: φ is quantifier-free, i.e. all variables implicitly

universally quantified

Applications in particular to formal verification
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Checking Satisfiability Modulo Theories

Given: A quantifier-free formula φ (implicitly existentially quantified)

Task: Decide whether φ is T-satisfiable

(T -validity via “T |= ∀ φ” iff “∃ ¬φ is not T -satisfiable”)

Approach: eager translation into SAT

Encode problem into a T -equisatisfiable propositional formula

Feed formula to a SAT-solver

Example: T = equality (Ackermann encoding)

Approach: lazy translation into SAT

Couple a SAT solver with a given decision procedure for T-satisfiability

of ground literals

For instance if T is “equality” then the Nelson-Oppen congruence

closure method can be used
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Lazy Translation into SAT
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Lazy Translation into SAT
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Lazy Translation into SAT
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Lazy Translation into SAT
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Lazy Translation into SAT
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Lazy Translation into SAT
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Lazy Translation into SAT

Automated Theorem Proving – Peter Baumgartner – p.79



Lazy Translation into SAT: Summary

Abstract T -atoms as propositional variables

SAT solver computes a model, i.e. satisfying boolean assignment for

propositional abstraction (or fails)

Solution from SAT solver may not be a T -model. If so,

Refine (strengthen) propositional formula by incorporating reason for

false solution

Start again with computing a model
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Optimizations

Theory Consequences

The theory solver may return consequences (typically literals) to guide

the SAT solver

Online SAT solving

The SAT solver continues its search after accepting additional clauses

(rather than restarting from scratch)

Preprocessing atoms

Atoms are rewritten into normal form, using theory-specific atoms (e.g.

associativity, commutativity)

Several layers of decision procedures

“Cheaper” ones are applied first
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Combining Theories
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Nelson-Oppen Combination Method
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Nelson-Oppen Combination Method
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Nelson-Oppen Combination Method

Automated Theorem Proving – Peter Baumgartner – p.85



Nelson-Oppen Combination Method

Automated Theorem Proving – Peter Baumgartner – p.86



Nelson-Oppen Combination Method
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Nelson-Oppen Combination Method
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Nelson-Oppen Combination Method
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Nelson-Oppen Combination Method
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Nelson-Oppen Combination Method
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Nelson-Oppen Combination Method
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Conclusions

Talked about the role of first-order theorem proving

Talked about some standard techniques (Normal forms of formulas, Resolution

calculus, unification, Instance-based method, Model computation)

Talked about DPLL and Satisfiability Modulo Theories (SMT)

Further Topics

Redundancy elimination, efficient equality reasoning, adding arithmetics to

first-order theorem provers

FOTP methods as decision procedures in special cases

E.g. reducing planning problems and temporal logic model checking problems to

function-free clause logic and using an instance-based method as a decision

procedure

Implementation techniques

Competition CASC and TPTP problem library

Instance-based methods (a lot to do here, cf. my home page)

Attractive because of complementary features to more established methods
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