
Metalogic Part II

Gödel’s Remarkable Theorem

Presenter: Errol Martin

Metalogic

Part I of the metalogic course discussed (is discussing, will be
discussing, ...)

• Axiomatisation and model theory of predicate logic

• Completeness Theorem for first-order predicate logic

• Formalisation of arithmetic as Peano Arithmetic in first
order predicate logic.

• The Löwenheim-Skolem results about the size of first order
models.

In Part II we cover the following topics

• Computability and Recursive Functions

• Proof that exactly the partial recursive functions are com-
putable

• Gödel’s Incompleteness Theorems

1

Lecture Topics

Historical Summary: Hilbert’s Program; Gödel’s Theorems; For-
malisation of Arithmetic; Concept of Computability

Computable Functions I: Partial and Primitive Recursive Func-
tions

Computable Functions II: Turing Machines

Church’s Thesis

Theorem: Equivalence of partial recursive functions and Turing
machine computable functions.

The incompleteness results: Arithmetisation of syntax

The incompleteness results: Main Theorems

2

References

These notes are mainly based on the texts of Boolos and Jeffrey,
and Y.I. Manin. The article by Smorynski in the Handbook of
Mathematical Logic also gives a good condensed coverage.

Boolos, G. and Jeffrey, R., Computability and Logic, Cambridge
U.P. 1974 (third edition 1989).

Feferman, Solomon et.al.Kurt Gödel: Collected Works, Vol I,
Oxford, 1986.

Manin, Y.I., A course in mathematical logic, Springer-Verlag,
1977.

Rogers, H., Theory of recursive functions and effective com-
putability, McGraw-Hill, 1967.

Reid, C., Hilbert, Springer-Verlag, 1970. (Second Edition 1996)

Smith, Peter, An introduction to Gödel’s Theorems, Cambridge
U.P., 2007

Smorynski, C, The incompleteness theorems, in Handbook of
Mathematical Logic, ed. Jon Barwise, North-Holland 1977.

3

A Brief History

• Hilbert’s program;

• Gödel

• Computable functions: Church, Turing, Kleene

The very deep and very powerful results in metalogic of the
1930s were unexpected. They arose in a context in which it was
expected that a finitary proof of consistency of arithmetic would
shortly be forthcoming.

4

The Great Quest: Hilbert’s Consistency Program

The mathematician David Hilbert (1862-1943) proposed the
complete axiomatisation and formalisation of all mathematical
knowledge and proofs.

Although committed to formal methods, many of Hilbert’s proofs
were existential in nature, which ran counter to the finitistic,
constructivist methods of mathematics.

E.g., in 1886 David Hilbert had proved a conjecture in algebra
called Gordan’s Problem (Paul Gordan 18xx-1nubering). The
proof was not satisfactory to all mathematicians, because it was
non-constructive in its methods. It proved the existence of a
basis for an algebra but did not show how to construct the
basis.

Gordan responded: “Das ist nicht mathematik. das ist theolo-
gie.”

5

Hilbert’s Response

To deal with this criticism, Hilbert proposed that the formal
methods program should establish that all of the Ideal existential
arguments could in principle be replaced by Real constructive
arguments, by showing some sort of conservation result:

Conservation Result

I ` φ⇒ R ` φ

Consistency

Attempting to show that formal systems are consistent is a nat-
ural extension of the Conservation Program.

In the first place, consistency is the assertion that a certain
string (e.g. 0 = 1) is not derivable. Since this is finitistically
meaningful it ought to have a finitistic proof.

More generally, proving consistency of the abstract, ideal, sys-
tem, using finitistic means, already establishes the conservation
result.

6

Consistency ⇒ Conservation

Proof Idea:

Suppose I is some abstract theory and R is some real theory
which proves the consistency of I.

Thus the Conservation program reduces to the consistency pro-
gram, and Hilbert asserted:

“If the arbitrarily given axioms do not contradict each other
through their consequences, then they are true, [and] then the
objects defined through the axioms exist. That, for me, is the
criterion of truth and existence”

However, Gödel’s results showed that this program does not
work ...

7

Gödel’s Incompleteness Theorem

The incompleteness theorems of Gödel (1931) undermined Hilbert’s
program. They depend on using arithmetic to code the metathe-
ory of a formal theory into the formal theory itself. We discuss
the details later. The first theorem, the Incompleteness Theo-
rem, is:

Theorem. Let T be a formal theory containing arithmetic. Then
there is a sentence ϕ which (under coding) asserts its own un-
provability and is such that

(i) T is consistent ⇒ not(T ` ϕ).

(ii) T ω-consistent ⇒ not(T ` ¬ϕ)

Intuitively, the sentence ϕ is true, since, assuming that T is
consistent, it is unprovable and it ’says’ that it is unprovable.
However, it is not a theorem of T, assuming that T is con-
sistent. Hence T is incomplete on this (practically necessary)
assumption.

For discussion: Is it reasonable to assume that T, viz. for-
malised arithmetic, is consistent?

8

Gödel’s Second Incompleteness Theorem

Theorem. Let T be a consistent formal theory containing arith-
metic. Then

not(T ` ConT)

where ConT is the (coded) sentence asserting the consistency
of T.

This theorem directly affects the consistency program.

9

Formalisation of Arithmetic

Peano had proposed axioms for arithmetic in the 19th century.
It turns out that these can be given a first-order formalisation.

Peano Arithmetic PA:

Take a first order predicate language with one individual con-
stant 0 (read: zero) and one unary function s(x) (read: the
successor of x). The numbers are coded by 0, s(0), s(s(0)),
etc.

Peano Arithmetic is an extension of first-order logic which adds
to the axiomatisation of logic additional axioms defining the
properties of numbers. This can be done using the language of
first-order logic.

10

The concept of
function computable by an algorithm

Around 1935 the informal notion of an algorithmically com-
putable function was formalised in several ways, including simple
step-at-a-time calculations (Turing Machines), and building up
(recursively defining) functions starting from a very simple basis.

Informally a function y = f(x1, . . . , xk) is computable if there
exists a procedure or algorithm which determines its value in a
finite number of steps.

Because we are formalising an informally given concept, there is
always the possibility of another definition of computability, and
the possibility that it might not be equivalent to the previously
established theories of computability.

However, it turned out that all of the formal proposals for com-
putability are equivalent: they pick out the same set of functions.

This became the subject of much discussion and analysis in the
years following the publication of Gödel’s results, with proposals
by Kleene, Markov, Church, and others ...

11

Attributes of Computable Functions

Hartley Rogers (Theory of Recursive Functions and Effective
Computability) lists 10 features which are relevant in analyzing
the informal notion of an algorithm:

1. Finite set of instructions
2. A computing agent carries out the instructions
3. The steps can be stored and retrieved
4. The agent carries out the instructions in a discrete stepwise
manner’ (i.e. no fuzzy logic!)
5. The agent carries out the instructions deterministically
6. No fixed bound on the size of the inputs
7. No fixed bound on the size of the instruction set
8. No fixed bound on the size of working storage
9. The capacity of the computing agent is to be limited, nor-
mally to simple clerical operations
10. There is no fixed bound on the length of the computation.

Of these, only # 10 is contentious. According to Rogers, some
mathematicians find counterintuitive certain theorems in the for-
mal theory of computability which embody # 10.

12

We will examine three formalisations of computable functions:

• Partial Recursive Functions – An ‘axiomatic approach’

• Turing Machine (computable) Functions – A ‘state-machine’
approach

• Abacus Machines – A ‘computer-like’ approach

and discuss and outline the proofs that they are equivalent

13

Church’s Thesis

Alonzo Church proposed the thesis that the set of functions
computable in the sense of Turing Machines or partial recursive
functions is identical with the set of functions that are com-
putable by whatever effective method, assuming no limitations
on time, speed, or materials.

Church’s Thesis (p.20, Boolos and Jeffrey)

“But since there is no end to the possible variations in detailed
characterizations of the notions of computability and effective-
ness, one must finally accept or reject the thesis (which does
not admit of mathematical proof):

Thesis: the set of functions computable in one sense is identical
with the set of functions that men or machines would be able
to compute by whatever effective method, if limitations on the
speed and material were overcome.”

14

Recursive Functions

Recursive functions are a sort of ‘axiomatic’ development of the
concept of computability. We will follow Rogers’ approach to
recursive functions:

• Define the primitive recursive functions first.

• Then show that the primitive recursive functions are insuf-
ficient to be all of the algorithmically computability func-
tions, because of diagonalisation and the existence of strong
counterexamples.

• Introduce the partial recursive functions as a remedy for
this.

15

Three approaches to Computability

• Primitive and Partial Recursive Functions

• Turing Machines

• Abacus (Register) Machines

• Diagonalisation, Halting, Undecidability

16

Primitive Recursive Functions

A function f(x) = f(x1, . . . , f(xn) on the integers is primitive
recursive iff it is either a basic function:

f(x) = 0

f(x) = s(x)

f(x) = xi

or the function is defined from other primitive recursive functions
by the rules of composition:

f(x) = g(h1(x), ..., hm(x)

and recursion: {
f(0, x) = g(x)
f(x+ 1, x) = h(f(x, x), x, x)

17

What functions are primitive recursive?

• All constant functions

f(x) = 3 =df s(s(s(0))) is defined by iterating successor
and composition

f(x) =df s(s(s(0)))

• Addition, Multiplication, Exponentiation

Using the recursion rule

• Functions defined by cases:

f(x) =
{
g1(x) if h(x) = 0
g2(x) if h(x) 6= 0

• ...

18

• Continuing in this way, developing the argument that var-
ious functions are primitive recursive, it becomes plausible
that all ordinary mathematical functions are primitive re-
cursive.

• ... However, this is not quite true

19

Partial Recursive Functions

The class of primitive recursive functions is insufficient to define
all computable functions, since it lacks the case where a function
is implicitly defined within another function.

The partial recursive functions add another rule:

h(x) =
{

smallest y s.t. f(x, y) = 0, if it exists
undefined, otherwise

Notation: h = Mn[f]

Example: Mn[sum]

Mn[sum](x) =
{

0 when x = 0;
undefined otherwise

20

Turing Machine Computability

Provides a ’state-machine’ flavour to computation. A Turing
Machine is well-known. Consists of:

• An unending tape marked into squares

• Symbols: s0 = blank, s1, ..., sn

• A state-machine that, depending on its current state, reads/writes
the current square and possibly changes to a new state

• States q0,...,qm

• Actions:

Halt

Move Right one square

Move Left one square

Write si on the current square (o ≤ i ≤ m

21

‘Snapshot’ of a Turing Machine

At most a finite number of squares are not blank, both initially
and at later stages

The contents of the current (scanned) square is is known to the
machine

The initial tape configuration forms part of the description

Machine starts in state q1, by convention

22

Example: Write s1s1s1 onto a blank tape

23

Specifying a Turing Machine program

1. State-Event table. What the machine does for each possible

state and scanned symbol:

s0 s1
q1 s1q1 Lq2
q2 s1q2 Lq3
q3 s1q3

2. Flow graph

3. To be really official about this, define a Turing Machine TM
as a Set of quadruples:

TM =< present state, scanned symbol, action, next state >

In our case, TM3, the TM which writes 3 1s on a blank tape
then stops, is:

TM3 = { < q1, s0, s1, q1 >,< q1, s1, L, q2 >,< q2, s0, s1, q2 >,

< q2, s1, L, q3 >,< q3, s0, s1, q3 >}

24

Ways to Represent Turing Machines

1. Set of quadruples as above

2. Redefine q1 as q′, q2 as q′′, s5 as s′′′′′, etc. Then the set
of quadruples defining a Turing machine can be represented as
a single ’word’ constructed on a finite alphabet according to
specific construction rules: need some standard convention to
describe halting.

q′SS′q′q′S′Lq′′

3. Sequence of Configurations: The computation can be repre-
sented by keeping track of the tape configurations.

25

Turing Machine Example: Double the number of 1’s on
a tape

TM Example: Write 2n 1s on an initially blank tape

Method 1: String together 2n replicas of

Method 2: Write n 1s on the tape, then double that (using the
previous program)

26

27

28

These programs quickly become immensely complicated; fortu-
nately we will shortly move to arguments about TMs, rather
than using them for computation.

29

Diagonalisation

This well-known method shows that for any enumeration S1, S2, ...
of sets (of integers, say), a set can be constructed which is not
on the list.

30

Diagonalisation Method

Use a characteristic function si to represent the set Si:

si(n) =
{

1 if n ∈ si
0 otherwise

The enumeration S1, S2, ... is then

1.s1(1) s1(2)s1(3) ...
...

m.sm(1) sm(2)sm(3) ...
...

Now construct the function S(n):

S(n) =
{

0 if sn(n) = 1
1 if sn(n) = 0

That is, S(n) takes the opposite of the (n, n) diagonal value.
Result: S is not in the enumeration

31

The Halting Problem

An application of diagonalisation.

Any Turing Machine M (a set of special quadruples, as above)
can be represented as a ‘word’ in an alphabet of 6 letters: �, 1,
′, q, R, L

For example, the machine {q01Rq1, q11′′1′q2}maps to q1Rq′q′1′′1′q′′

This can be coded into the standard language

�⇒ s0

1⇒ s1
′ ⇒ s2

q ⇒ s3

R⇒ s4

L⇒ s5

Using this coding, every TM M has a standard description pMq

32

The Halting Problem

Question:

Does machine M eventually stop when given the input pMq?
(I.e. when started on a tape with pMq written on it?)

Suppose a machine S existed which:

• Takes pMq as input, and

• Eventually stops on a 1 if M does halt when given pMq,
and

• Stops on a blank if M never stops when started with input
pMq.

Question:

Does machine S stop on pSq

⇒ leads to a contradiction

33

Universal Turing Machine

It is possible to construct a machine U which will simulate the
action of any machine M .

U takes as input:

• A standard description pMq

• A coding of a tape pattern

The question

Does U applied to a word W eventually stop on a �?

is unsolvable

34

Undecidability

The unsolvability of the general halting problem can be applied
to the problem of the decidability of a logical theory:

Code U to a formula ϕ

The effect of U on given inputs is expressed as logical conse-
quences of ϕ.

Hence: If (sufficiently rich) logical theory T is decidable, then
the halting problem for U is solvable.

Thus: Logical Theory is undecidable

35

Lambek’s Abacus Machine

This is our third approach to computability. Will allow us to
connect unsolvability/undecidability to incompleteness.

A Lambek machine is a register style machine similar to a digital
computer in formal description.

Consists of an unlimited number of registers

containing numbers of arbitrary size.

There are two primitive operations:

• Add 1 to a register

• Remove 1 from a register (or emit an exception if the
register contains 0

36

Primitive Operations are connected together and this is repre-
sented with a flowchart. The flowcharts for the two primitive
operations are:

Add 1 to Register Rn:

Remove 1 from Register Rn (or emit an exception).

37

Addition Using an Abacus Machine

A flow chart to represent:

Add the numbers in Rn and Rm and leave the result in Rm would
look like this:

Exercise: Add the numbers in Rn and Rm without loss from Rn

38

Equivalence of the various forms of computability

Theorem. A function f(x) is partial recursive iff f(x) is Turing
Machine computable

Proof (Boolos and Jeffrey, Kleene, Wang, Lambek). Use 3 lem-
mas

A ⊆ T

R ⊆ A

T ⊆ R

where A is the set of functions computable by Abacus Machines,
T is the set of functions computable by Turing Machines, and
R is the set of partial recursive functions.

39

[Preliminary step] Set up a canonical form for TM
computations.

Suppose a TM is computing f(x1, x2) for given arguments. The
computation can be arranged as follows:

1. The arguments x1, x2 are represented by blocks of 1s sepa-
rated by a single blank. The value f(x1, x2) is also a single block
of 1s.

2. Machine starts and stops at leftmost 1.

3. Machine never moves more than two squares beyond the
leftmost 1.

4. Machine writes only 1 and � (blank).

5. The value (result of the calculation) is written starting from
the same square as the leftmost 1 of the arguments.

This form is arbitrary, but fixes the computation for translation
into other forms of computability.

40

In a similar way, we need to specify a standard configuration for
an abacus machine. When calculating f(x1, . . . , xn) = y:

Put f(x1, . . . , xn) into the first n registers (or, n adjacent registers
if the first doesn’t make sense). The remaining registers are to
be empty. The result y is found in some specified register Rm,
m 6= 1, . . . , n

41

Lemma. A ⊆ T

Proof Method. The idea is to translate the initial configuration
of the abacus registers to a standard Turing machine tape.

Describe a method to translate the flowgraph of the abacus
machine to Turing Machine quadruples.

The main cases are for the basic operations of ‘add to a register’
and ‘take from a register’:

42

The ‘add to a register’ case

translates to:

• From standard position, move to the blank at the end of
block s

• Write a 1

• Move right to check if more blocks

• If s is the last block return to standard position

• If more blocks then move move them all one square to the
right, and

• Return to standard position.

43

The ‘remove 1 from register if you can’ case

translates to:

• From standard position, move to the first 1 in the s-th
block

• If this is a single 1 (test by moving right one space) then
[S] = 0.

• If [s] = 0 return to standard position

• If [s] 6= 0 erase the rightmost 1

• Move the remaining blocks, if any, one square to the left

• Return to standard position.

44

Mop-Up Operation

Translating the abacus operations leaves the value f(x1, . . . , xn)
in the nth block.

The n-th must be moved to standard position:

• Leave a marker at the standard position

• Erase all other 1s except for the n-th block

• Move the n-th block up to the standard position

45

Lemma. The partial recursive functions are abacus computable

R ⊆ A

Proof. Proof method

Find flow graphs for each of the basic functions

Show how to convert flow graphs corresponding to the argu-
ments of the two rules o composition, recursion and minimisa-
tion, into a flow graph computing the result.

– composition

– recursion

– minimisation

46

Minimisation
Compute Mn[f](x), given f(x, y)

Put x in register 1

Put 0 in register 2

Compute f(x,0) if = 0 then done

else

Compute f(x,1) if = 0 then done

else

...

47

Theorem (Kleene). In obtaining a recursive function from ba-
sic functions using the composition, recursion and minimisation
rules, the operation of minimisation need not be used more than
once.

48

Completing the circle of equivalences

Lemma. All functions computable by means of a Turing Ma-
chine are partial recursive

T ⊆ R

Proof. Consider a Turing Machine implementing a standard com-
putation

Associate a left number and a right number with each stage of
the computation

Show that the left and right numbers are primitive recursive
functions of the initial left and right numbers

Use minimisation to model the situation that the machine halts
(enters state 0, say) after computing f

49

Proof that T ⊆ R continued

Now define g(a, b, c)

If t is a stage not later than the stage at which M halts when
computing f(x1, x2)

g(x1, x2, t) = 〈left no., state, right no.〉

At beginning,

g(x1, x2,0) = 〈0,1, s(x1, x2)〉

[where 0 is the left number, 1 is the state, and s(x1,x2) is the
right number.]

By definition

ctr(g) 6= 0 for all y ≤ t

Thus M halts at t when computing f(x1, x2) iff t is the least
stage y s.t. ctr(g) = 0.

Use Mn to represent this.

50

Gödel Numbering

Now, what does all this have to do with logic, arithmetic, and
incompleteness? Start by connecting up arithmetic terms (which
are modelled as numbers) with formulas in logical symbolism.

Coding Method which assigns a closed term t = pϕq to each
formula ϕ in the language.

Also can be extended to assign a closed term to each derivation
– which after all is only a sequence of formulas.

If the language in question is the language of formalised arith-
metic, then the code will be a numeral

n =df s(s(· · · s(0) · · ·)︸ ︷︷ ︸
n successor symbols

51

Coding Details

The coding method has to assign a unique term to each formula.
There are many ways to do this. Here is the approach due to
Boolos and Jeffrey.

() & ∃ x0 f0
0 f1

0 f2
0 · · · A0

0 A1
0 A2

0

1 2 3 4 5 6 68 688 7 78 788
, ∧ ∀ x1 f0

1 f1
1

29 39 49 59 69 689
f0

2 f1
2

699 6899

Example: ∀x(x = x) is coded by this scheme to 4951578852

Proof is required that this representation is unique.

52

The classical coding mechanism

Gödel used a coding method based on unique composition into
primes.

Symbol Code
0 1
s 2
+ 3
× 4
= 5
(6
) 7
x 8
′ 9
¬ 10
∧ 11
∃ 12

Example: ¬(∃x)¬(x = x) is coded as 210.36.512.78.117.1310.· · · p()
n .

This representation is unique, by the fundamental theorem of
arithmetic.

53

Official gödel numbering for derivations

Note that the gödel number of a formula ϕ, viz pϕq, must be
greater than 12. This lets us continue the same general scheme
for derivations:

Sequences of formulas

ϕ1, ϕ2, . . .

can be coded by

2gn(ϕ1).3gn(ϕ2). · · · .pgn(ϕn)
n

Hence, derivations can be coded as well as formulas

54

Representing Gödel Numbers in Arithmetic

Let pϕq be the numeral corresponding to the gödel number of
ϕ. (pϕxq is a closed term).

A Turing Machine (hence a recursive function by previous theo-
rem) can calculate whether n is the gödel number of an expres-
sion

Recursive functions can be defined formally (i.e. in formal arith-
metic) leading to

A function

sub(pϕxq, t) = pϕtq

A provability predicate

Prov(t1, t2)

` ϕ iff ` Prov(t, pϕq)

for some closed t

55

Provability Predicate

`T Prov(t1, t2) means, informally, “t1 is the code of a derivation
in T of the formula with code t2”.

Suppose we further define:

PrT(y) =df ∃xProvT(x, y)

Now we have reached a truth-predicate for a formula, a model.
Therefore, can test the adequacy of the model by asking the
question:

Is T ` ϕ ⇐⇒ T ` Pr(pϕq) ?

From left to right:

obtained from

T ` ϕ ⇐⇒ T ` Prov(t, pϕq) for some t
by generalisation

From right to left. This is more difficult. It may not be true,
unless there is a numeral for each number which is a code (in
the right way).

56

Derivability Conditions

The encoding program can be carried out in the formal system
so that:

D1. T ` φ⇒ T ` Pr(pφq)

D2. T ` Pr(pφq)→ Pr(pPr(pφq)q)

D3. T ` (Pr(pφq) ∧Pr(pφ→ ψq))→ Pr(pψq)

57

Diagonalisation Lemma

Let A(x) be a formula with only x free. Then there is a formula
G such that

` G↔ A(pGq

Proof.

Let Bx↔ A(sub(x, x)) be the diagonalisation of A.

Let m = pBxq

Let G = Bm

Then

G ↔ Bm Df.
↔ A(sub(m,m)) Df.
↔ A(sub(pBxq,m)) Df m.
↔ A(pBmq) Df sub.
↔ A(pGq) Df.

58

Now apply the diagonalisation lemma to the formula ¬Pr(x)

Theorem. Suppose A is a sentence which “asserts its own un-
provability”, i.e. ` A↔ ¬Pr(pAq)

then

(i) T 6 `A

(ii) T 6 `¬A provided T is ω-consistent

Proof of (i).

T ` A⇒ T ` Pr(pAq) (D1)

⇒ T ` ¬A (hyp)

⇒ T is inconsistent

thus T 6 `A

59

Proof of (ii)

If T is ω-consistent, then the converse of D1 holds, viz:

T ` Pr(pAq)⇒ T ` A

T ` ¬A is proved in (i)

⇒ T ` ¬¬Pr(pAq)

⇒ T ` Pr(pAq)

⇒ T ` A

⇒ contradiction

60

